11 research outputs found

    Separase prevents genomic instability by controlling replication fork speed

    Get PDF
    Proper chromosome segregation is crucial for preserving genomic integrity, and errors in this process cause chromosome mis-segregation, which may contribute to cancer development. Sister chromatid separation is triggered by Separase, an evolutionary conserved protease that cleaves the cohesin complex, allowing the dissolution of sister chromatid cohesion. Here we provide evidence that Separase participates in genomic stability maintenance by controlling replication fork speed. We found that Separase interacted with the replication licensing factors MCM2-7, and genome-wide data showed that Separase co-localized with MCM complex and cohesin. Unexpectedly, the depletion of Separase increased the fork velocity about 1.5-fold and caused a strong acetylation of cohesin's SMC3 subunit and altered checkpoint response. Notably, Separase silencing triggered genomic instability in both HeLa and human primary fibroblast cells. Our results show a novel mechanism for fork progression mediated by Separase and thus the basis for genomic instability associated with tumorigenesis

    Separase prevents genomic instability by controlling replication fork speed

    Get PDF
    Proper chromosome segregation is crucial for preserving genomic integrity, and errors in this process cause chromosome mis-segregation, which may contribute to cancer development. Sister chromatid separation is triggered by Separase, an evolutionary conserved protease that cleaves the cohesin complex, allowing the dissolution of sister chromatid cohesion. Here we provide evidence that Separase participates in genomic stability maintenance by controlling replication fork speed. We found that Separase interacted with the replication licensing factors MCM2-7, and genome-wide data showed that Separase co-localized with MCM complex and cohesin. Unexpectedly, the depletion of Separase increased the fork velocity about 1.5-fold and caused a strong acetylation of cohesin's SMC3 subunit and altered checkpoint response. Notably, Separase silencing triggered genomic instability in both HeLa and human primary fibroblast cells. Our results show a novel mechanism for fork progression mediated by Separase and thus the basis for genomic instability associated with tumorigenesis

    Progress toward Understanding the Molecular Basis of Fruit Response to Hypoxia

    No full text
    Oxygen has shaped life on Earth as we know it today. Molecular oxygen is essential for normal cellular function, i.e., plants need oxygen to maintain cellular respiration and for a wide variety of biochemical reactions. When oxygen levels in the cell are lower than levels needed for respiration, then the cell experiences hypoxia. Plants are known to experience root hypoxia during natural environmental conditions like flooding. Fruit, on the other hand, is known to be hypoxic under normal oxygen conditions. This observation could be explained (at least partially) as a consequence of diffusional barriers, low tissue diffusivity, and high oxygen consumption by respiration. From the physiological point of view, hypoxia is known to have a profound impact on fruit development, since it is well documented that a low oxygen environment can significantly delay ripening and senescence of some fruit. This effect of a low-oxygen environment is readily used for optimizing storage conditions and transport, and for prolonging the shelf life of several fruit commodities. Therefore, further understanding of the complex relationship between oxygen availability within the cell and fruit development could assist postharvest management

    Antiphytoviral Activity of Satureja montana L. ssp. variegata (Host) P. W. Ball Essential Oil and Phenol Compounds on CMV and TMV

    No full text
    The essential oil of Satureja montana L. ssp. variegata (Host) P. W. Ball (Lamiaceae) was characterized by a high concentration of oxygenated monoterpenes (71.3%), among which carvacrol (19.4%) and thymol (16.6%) were the major compounds. When the essential oil was applied on local hosts Chenopodium amaranticolor Coste & Reyn. and Chenopodium quinoa Willd. simultaneously with the infecting virus, the number of local lesions on both Tobacco mosaic virus (TMV) and Cucumber mosaic virus (CMV) infected plants was reduced for 29.2% and 24.1%, respectively. When applied individually for each virus, thymol was more effective in reducing CMV infection (33.2%), while carvacrol was more effective in reducing the TMV infection (34.3%). No synergistic effect of both monoterpenes was observed in the antiviral activity of the oil

    Short-Term Responses of Apple Fruit to Partial Reoxygenation during Extreme Hypoxic Storage Conditions

    No full text
    The short-term (24 h) responses of apple fruit (cv. 'Granny Smith') to a shift in the oxygen concentration from 0.4 to 0.8 kPa, a protocol applied in the dynamic controlled atmosphere (DCA) storage technique, have been studied. Metabolomics and transcriptomics analyses of cortex tissue showed an immediate down-regulation of fermentative metabolism and of the GABA shunt in parallel with the activation of several 2-oxoglutarate-dependent dioxygenase genes. Down-regulation of the free phenylpropanoid pathway genes and the diversion of propanoid synthesis toward the methyl-erythritol phosphate route were also observed. Partial reoxygenation induced increases of glyceric, palmitic, and stearic acids and of several phosphatidylcholines and phosphatidylethanolamines and decreases of specific amino acids (valine, methionine, glycine, phenylalanine, and GABA), organic acids (arachidic and citric acids), and secondary metabolites (catechin and epicatechin). The oxygen shift also resulted in transcriptional rewiring of several components of IAA and ABA regulation and signaling. These results provide novel insights on the complexity of the short-term physiological responses of apple fruit to partial reoxygenation applied during DCA storage

    Overexpression of the cohesin-core subunit SMC1A contributes to colorectal cancer development

    Get PDF
    Abstract Background Cancer cells are characterized by chromosomal instability (CIN) and it is thought that errors in pathways involved in faithful chromosome segregation play a pivotal role in the genesis of CIN. Cohesin forms a large protein ring that binds DNA strands by encircling them. In addition to this central role in chromosome segregation, cohesin is also needed for DNA repair, gene transcription regulation and chromatin architecture. Though mutations in both cohesin and cohesin-regulator genes have been identified in many human cancers, the contribution of cohesin to cancer development is still under debate. Methods Normal mucosa, early adenoma, and carcinoma samples deriving from 16 subjects affected by colorectal cancer (CRC) were analyzed by OncoScan for scoring both chromosome gains and losses (CNVs) and loss of heterozygosity (LOH). Then the expression of SMC1A was analyzed by immunochemistry in 66 subjects affected by CRC. The effects of SMC1A overexpression and mutated SMC1A were analyzed in vivo using immunocompromised mouse models. Finally, we measured global gene expression profiles in induced-tumors by RNA-seq. Results Here we showed that SMC1A cohesin core gene was present as extra-copies, mutated, and overexpressed in human colorectal carcinomas. We then demonstrated that cohesin overexpression led to the development of aggressive cancers in immunocompromised mice through gene expression dysregulation. Conclusion Collectively, these results support a role of defective cohesin in the development of human colorectal cancer

    Extreme Hypoxic Conditions Induce Selective Molecular Responses and Metabolic Reset in Detached Apple Fruit

    No full text
    The ripening physiology of detached fruit is altered by low oxygen conditions with profound effects on quality parameters. To study hypoxia-related processes and regulatory mechanisms, apple (Malus domestica, cv Granny Smith) fruit, harvested at commercial ripening, were kept at 1°C under normoxic (control) and hypoxic (0.4 and 0.8 kPa oxygen) conditions for up to 60 days. NMR analyses of cortex tissue identified eight metabolites showing significantly different accumulations between samples, with ethanol and alanine displaying the most pronounced difference between hypoxic and normoxic treatments. A rapid up-regulation of alcohol dehydrogenase and pyruvate-related metabolism (lactate dehydrogenase, pyruvate decarboxylase, alanine aminotransferase) gene expression was detected under both hypoxic conditions with a more pronounced effect induced by the lowest (0.4 kPa) oxygen concentration. Both hypoxic conditions negatively affected ACC synthase and ACC oxidase transcript accumulation. Analysis of RNA-seq data of samples collected after 24 days of hypoxic treatment identified more than 1000 genes differentially expressed when comparing 0.4 vs. 0.8 kPa oxygen concentration samples. Genes involved in cell-wall, minor and major CHO, amino acid and secondary metabolisms, fermentation and glycolysis as well as genes involved in transport, defense responses, and oxidation-reduction appeared to be selectively affected by treatments. The lowest oxygen concentration induced a higher expression of transcription factors belonging to AUX/IAA, WRKY, HB, Zinc-finger families, while MADS box family genes were more expressed when apples were kept under 0.8 kPa oxygen. Out of the eight group VII ERF members present in apple genome, two genes showed a rapid up-regulation under hypoxia, and western blot analysis showed that apple MdRAP2.12 proteins were differentially accumulated in normoxic and hypoxic samples, with the highest level reached under 0.4 kPa oxygen. These data suggest that ripe apple tissues finely and specifically modulate sensing and regulatory mechanisms in response to different hypoxic stress condition
    corecore